Search results for " 35S05"

showing 4 items of 4 documents

Spectra for Semiclassical Operators with Periodic Bicharacteristics in Dimension Two

2014

We study the distribution of eigenvalues for selfadjoint $h$--pseudodifferential operators in dimension two, arising as perturbations of selfadjoint operators with a periodic classical flow. When the strength $\varepsilon$ of the perturbation is $\ll h$, the spectrum displays a cluster structure, and assuming that $\varepsilon \gg h^2$ (or sometimes $\gg h^{N_0}$, for $N_0 >1$ large), we obtain a complete asymptotic description of the individual eigenvalues inside subclusters, corresponding to the regular values of the leading symbol of the perturbation, averaged along the flow.

Mathematics - Spectral Theory35P20 35Q40 35S05 37J35 37J45 58J40Mathematics - Analysis of PDEsDimension (vector space)General MathematicsFOS: MathematicsSemiclassical physicsMathematics::Spectral TheorySpectral Theory (math.SP)Spectral lineAnalysis of PDEs (math.AP)MathematicsMathematical physicsInternational Mathematics Research Notices
researchProduct

Semiclassical Gevrey operators and magnetic translations

2020

We study semiclassical Gevrey pseudodifferential operators acting on the Bargmann space of entire functions with quadratic exponential weights. Using some ideas of the time frequency analysis, we show that such operators are uniformly bounded on a natural scale of exponentially weighted spaces of holomorphic functions, provided that the Gevrey index is $\geq 2$.

Mathematics::Complex VariablesMathematics - Complex VariablesMathematics::Analysis of PDEsStatistical and Nonlinear Physics32W25 35S05 47G30Mathematics::Spectral TheoryFunctional Analysis (math.FA)Mathematics - Functional AnalysisMathematics - Analysis of PDEsFOS: MathematicsGeometry and TopologyComplex Variables (math.CV)Mathematical PhysicsAnalysis of PDEs (math.AP)
researchProduct

Adiabatic evolution and shape resonances

2017

Motivated by a problem of one mode approximation for a non-linear evolution with charge accumulation in potential wells, we consider a general linear adiabatic evolution problem for a semi-classical Schrödinger operator with a time dependent potential with a well in an island. In particular, we show that we can choose the adiabatic parameter ε \varepsilon with ln ⁡ ε ≍ − 1 / h \ln \varepsilon \asymp -1/h , where h h denotes the semi-classical parameter, and get adiabatic approximations of exact solutions over a time interval of length ε − N \varepsilon ^{-N} with an error O ( ε N ) {\mathcal O}(\varepsilon ^N) . Here N > 0 N>0 is arbitrary. \center Résumé \endcenter Motivés par un pro…

Mathematics - Analysis of PDEsApplied MathematicsGeneral MathematicsFOS: MathematicsFOS: Physical sciencesMathematical Physics (math-ph)35J10 35P20 35B34 35S05Mathematical PhysicsAnalysis of PDEs (math.AP)
researchProduct

Numerical Recovery of Source Singularities via the Radiative Transfer Equation with Partial Data

2013

The inverse source problem for the radiative transfer equation is considered, with partial data. Here we demonstrate numerical computation of the normal operator $X_{V}^{*}X_{V}$ where $X_{V}$ is the partial data solution operator to the radiative transfer equation. The numerical scheme is based in part on a forward solver designed by F. Monard and G. Bal. We will see that one can detect quite well the visible singularities of an internal optical source $f$ for generic anisotropic $k$ and $\sigma$, with or without noise added to the accessible data $X_{V}f$. In particular, we use a truncated Neumann series to estimate $X_{V}$ and $X_{V}^{*}$, which provides a good approximation of $X_{V}^{*…

ta113Applied MathematicsGeneral MathematicsOperator (physics)ta111010102 general mathematicsMathematical analysisMicrolocal analysisNumerical Analysis (math.NA)Inverse problem01 natural sciences35R30 (Primary) 35S05 35R09 35Q20 92C55Neumann series010101 applied mathematicsSobolev spaceMathematics - Analysis of PDEsRadiative transferFOS: MathematicsGravitational singularityMathematics - Numerical Analysis0101 mathematicsAnisotropyMathematicsAnalysis of PDEs (math.AP)
researchProduct